If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 120 = 20t + 3t2 Solving 120 = 20t + 3t2 Solving for variable 't'. Reorder the terms: 120 + -20t + -3t2 = 20t + -20t + 3t2 + -3t2 Combine like terms: 20t + -20t = 0 120 + -20t + -3t2 = 0 + 3t2 + -3t2 120 + -20t + -3t2 = 3t2 + -3t2 Combine like terms: 3t2 + -3t2 = 0 120 + -20t + -3t2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -40 + 6.666666667t + t2 = 0 Move the constant term to the right: Add '40' to each side of the equation. -40 + 6.666666667t + 40 + t2 = 0 + 40 Reorder the terms: -40 + 40 + 6.666666667t + t2 = 0 + 40 Combine like terms: -40 + 40 = 0 0 + 6.666666667t + t2 = 0 + 40 6.666666667t + t2 = 0 + 40 Combine like terms: 0 + 40 = 40 6.666666667t + t2 = 40 The t term is 6.666666667t. Take half its coefficient (3.333333334). Square it (11.11111112) and add it to both sides. Add '11.11111112' to each side of the equation. 6.666666667t + 11.11111112 + t2 = 40 + 11.11111112 Reorder the terms: 11.11111112 + 6.666666667t + t2 = 40 + 11.11111112 Combine like terms: 40 + 11.11111112 = 51.11111112 11.11111112 + 6.666666667t + t2 = 51.11111112 Factor a perfect square on the left side: (t + 3.333333334)(t + 3.333333334) = 51.11111112 Calculate the square root of the right side: 7.14920353 Break this problem into two subproblems by setting (t + 3.333333334) equal to 7.14920353 and -7.14920353.Subproblem 1
t + 3.333333334 = 7.14920353 Simplifying t + 3.333333334 = 7.14920353 Reorder the terms: 3.333333334 + t = 7.14920353 Solving 3.333333334 + t = 7.14920353 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + t = 7.14920353 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + t = 7.14920353 + -3.333333334 t = 7.14920353 + -3.333333334 Combine like terms: 7.14920353 + -3.333333334 = 3.815870196 t = 3.815870196 Simplifying t = 3.815870196Subproblem 2
t + 3.333333334 = -7.14920353 Simplifying t + 3.333333334 = -7.14920353 Reorder the terms: 3.333333334 + t = -7.14920353 Solving 3.333333334 + t = -7.14920353 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + t = -7.14920353 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + t = -7.14920353 + -3.333333334 t = -7.14920353 + -3.333333334 Combine like terms: -7.14920353 + -3.333333334 = -10.482536864 t = -10.482536864 Simplifying t = -10.482536864Solution
The solution to the problem is based on the solutions from the subproblems. t = {3.815870196, -10.482536864}
| 12-(-3x+4)=24 | | m=13.8h | | 5x-2(1+4)=-15 | | 3(8+5x)-18=16 | | 12+(-3x-4)=24 | | -4000x^3+8000x-1=0 | | X+16=8+5x | | 27-4v^8+6v-5v^6= | | 4(tan)(x)+5=3 | | 58-x-29=19 | | 12(s+2.75)= | | 4tan(x)+5=3 | | 8p^2+3p+2= | | 2x-7=2(-3) | | X-1=4/X | | -5=(-8)+x | | sin^2(5x)=1/2 | | -5=(8)+x | | 3x+1=m | | -5=(-0.125)+x | | 8(2x-3)=11x+1 | | -7=13x-10x-16 | | 0-5=(0.125)+x | | xy+y+3x+3= | | 37-65=28+4X | | x^2+8x-33=o | | 3(2x-7)=-6x-21 | | 10x^2-10x-10=0 | | 6x-4-10=-4x+6 | | 7e^1*x=2e^2*x | | 7t-60+t^2=0 | | 2x+4=440 |